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Abstract*† 

 
Flight simulation often uses playback as a means to 
replay the movement of vehicles in a simulation envi-
ronment. Playback vehicles must be absolutely repeat-
able and computationally efficient. This paper presents 
an object-oriented design for playing back vehicle be-
havior using a direct vehicle-state playback, control-
surface playback, or pilot input playback. The design 
was added to the Langley Standard Simulation in C++ 
(LaSRS++) where it supports a number of current ex-
periments. The design provides an accurate means to 
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replay the dynamic behavior of a vehicle while mini-
mizing computational load. The design has proven to 
be flexible, maintainable, and extendible. 

Introduction 

Among the many things required to provide a repeat-
able flight environment, one of the more complex 
items is the presentation of other vehicles to a pilot. In 
military aircraft simulations a pilot may have to ac-
quire and destroy drones, maneuvering aircraft, fixed-
based ground targets, or moving ground targets.  In 
commercial aircraft simulations a pilot may have to 
deal with air and ground traffic while flying or taxiing 
in an airport’s vicinity. Qualitative research data can 
only be obtained if the vehicles in these scenarios 
move with absolute repeatability.  

Another complex requirement is to provide the means 
to replay the flight profile of a vehicle. Flight data 
from an aircraft that has crashed can be analyzed by re-
creating the flight. Simulation models can also be veri-
fied against test flight data. Analysis is difficult with-
out a simple, repeatable method of injecting data into a 
simulation model. 
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The Langley Standard Real-Time Simulation in C++ 
(LaSRS++) provides this repeatability using three dif-
ferent methods: state playback, control-surface play-
back, and pilot playback1. State playback records the 
states of a vehicle and uses the data to “playback” the 
vehicle’s movement without performing any integra-
tion. Control-surface playback records the control sur-
face commands or deflections and uses the data to rec-
reate the dynamic movement of a vehicle by driving 
control surfaces with the commands or deflections and 
integrating the state of the vehicle. Pilot playback rec-
ords the inputs made by a pilot and uses the data to 
playback the flight by injecting the recorded pilot 
commands into the fully operational simulation. Each 
of the three methods is applicable to different kinds of 
simulation research. 

State playback is applicable whenever pilot interaction 
with another vehicle is only dependent upon that vehi-
cle’s position, velocity, and orientation. For example, a 
fighter pilot might be tasked to target and destroy an-
other aircraft. To accomplish the task, the pilot must 
be able to see the CGI representation of the target, 
track the target with radar, and use a gun sight to de-
stroy the target aircraft. The CGI model, radar model, 
and gun model only need the target’s states to compute 
the its position, velocity and orientation relative to the 
pilot. Derived states for an aircraft like angle of attack, 
Mach number, and sideslip are not needed. Thus, state 
playback computational load is light when compared 
to a complete six degree of freedom simulation model. 
This allows multiple state-playback models to be used 
within the time constraints of a real-time simulation 
frame. 

Control-surface playback supports analysis of the 
simulation that requires removal of control law influ-
ences. For example, surface commands or surface de-
flections can be obtained from flight test data to recre-
ate the flight profile of the test vehicle. The perform-
ance of the simulation model can then be validated 
against the flight profile of the test vehicle. Control-
surface playback isolates the performance of a model 
from its control system, thereby allowing a developer 
to measure the performance of modifications to the 
aerodynamic package. Moreover, the developer can 

test the aerodynamics package before the control law 
has been completed. 

Pilot playback is used to analyze the response of a 
human to his/her environment or the response of a 
simulation model to a series of human inputs. For ex-
ample, if a pilot is tasked to perform emergency ma-
neuvers as part of a training exercise, the pilot’s inputs 
can be replayed while the instructor discusses the pi-
lot’s performance. State-playback would not provide 
all of the derived information necessary to completely 
re-create the test sequence as viewed by the pilot. An-
other application of pilot-playback is to analyze any 
unexpected behavior produced by a simulation model. 
If a pilot encounters an unexpected event while flying, 
the recorded inputs can be used offline to repeat the 
scenario so that the problem may be analyzed without 
requiring all of the resources necessary to perform 
pilot-in-the-loop, synchronous real-time simulations. 
Pilot playback also provides an ideal means to gener-
ate a demonstration of a simulation facility without a 
pilot in the loop thus allowing visitors an unobstructed 
view of the facilities.  

Design Requirements 

An object-oriented design was created to allow the 
playback and recording of dynamic vehicle data in a 
simulation framework. The design had the following 
requirements: 

1. The design must provide several general capa-
bilities that may be incorporated into any type 
of playback.  
a. The design must allow a vehicle to specify 

its starting point within the playback file. 
b. The design should have a minimal impact 

on the performance of the framework when 
there are vehicles in playback mode and no 
impact on performance when there are no 
vehicles in playback mode. 

c. The design must provide a method to delay 
the start of playback for a specified amount 
of time.  
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d. The design must provide a means to con-
tinuously loop. 

e. The design must provide a mechanism for 
recording data at integral divisions of the 
simulation frequency. 

f. The design must provide a mechanism for 
playing back data recorded with a different 
frequency than the simulation. 

g. The design must allow multiple vehicles to 
be driven from one playback file. 

 
2. The design should provide several specific 

playback capabilities.  
a. The design should support an airport traffic 

mode where the playback vehicles have 
some intelligence when taxiing. A vehicle 
should not run into other vehicles, should 
not incur upon the runway when another 
aircraft is taking off, should stop smoothly 
when forced to halt, etc… 

b. The design should support the playback of 
surface deflections or surface commands. 

c. The design should support the playback of 
cockpit inputs. 

 
A design that met the above requirements was imple-
mented in the Langley Standard Real-Time Simulation 
in C++ (LaSRS++) application framework. LaSRS++ 
provides a powerful object-oriented framework for 
dynamic vehicle simulation in real-time3. The frame-
work’s object-oriented design makes the software ex-
tremely flexible, easily maintainable, and provides a 
high degree of re-use4. Encapsulation was used to hide 
implementation details. Inheritance and aggregation of 
common subcomponents were used to achieve maxi-
mal code reuse. Virtual method interfaces were utilized 
to obtain the advantages of polymorphism. Docu-
mented design patterns were used where possible2. The 
Builder and Singleton patterns were used in the design. 
The Builder pattern separates the construction of a 

Figure 1 – RAMFile and RAMFileManager 

RamFileManager
Map<string,char*> open_files

stat ic RAMFileManager* instance()
stat ic void destroyInstance()
stat ic RAMFile* createRAMFile(st ring filename,  int size)
stat ic void destroyRAMFile(RAMFile* ramfile)

RAMFile
char* ram_buffer
char* position

int fread(void* const address, int size, int number_of_objects)
int fwrite(void* const address, int size, int number_of_objects)
int ftell(Origin origin = BEGINNING)
int fseek(int offset, Origin origin = BEGINNING)
void rewind()
void clear()
bool eof()
string getFilename()

0..*0..*

The class allows "file" 
access to the memory 
buffer. This allows file 
data to be read or 
writ ten during hard 
real-time operations .

This class manages the creation 
and destruction of all RAMFiles 
in the Simulation. The class 
maintains a map of filenames 
and memory buffers from the 
heap or in shared memory. The 
class creates RAMFile objects 
that share the same memory 
buffer if the same filename has 
been requested.
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complex object from its representation so that the same 
construction process can create different representa-
tions. The Singleton pattern ensures only one instance 
of a class exists and provides a global point of access 
to it. 

RAMFile 

The core of the design is a class called RAMFile. This 
class allocates a block of memory on the heap or in 
shared memory, and provides an interface that allows a 
client to treat the block of memory like a UNIX file. A 
client can read or write the “file” without the perform-
ance penalty associated with actual file access. This 
allows a client to write data to the RAMFile during 
hard real-time operations and then copy that data from 
the RAMFile to physical disk when the constraints of 
hard real-time are no longer in effect. The class also 
allows the file to be accessed by more than one client 
at a time. Figure 1 uses the Unified Modeling Lan-
guage (UML) to show the class diagram for the RAM-

File class and its relationship to a second class named 
RAMFileManager. 

RAMFileManager manages the creation and 
destruction of all RAMFile objects in the simulation. 
The Singleton pattern ensures that only one instance of 
this class is ever created. RAMFileManager fields 
requests by clients to create RAMFile objects via the 
createRAMFile method. The method returns a 
RAMFile reference. If a client is the first client to 
request that the contents of a file be used in a 
RAMFile, RAMFileManager allocates a memory 
buffer and loads the file’s contents into the buffer. The 
RAMFileManager then passes the buffer to the 
RAMFile when it is instantiated. If a client asks for a 
file that has already been loaded into a buffer for use 
by another client, the RAMFileManager class 
instantiates a RAMFile object by passing the pre-
existing memory buffer to RAMFile’s constructor. This 
allows multiple clients to work on a single file without 
complicating the interface of RAMFile. Similarly, each 
client calls destroyRAMFile when the client is finished 

Playback
PlaybackReader reader
PlaybackWriter writer

virtual void initialize()
virtual void update()
bool isRecording()
bool isPlayback ()
void setRecording(bool recording)
void setPlayback(bool playback)
void setRecordingFilename(const char* filename)
void setPlaybackFilename(const char* filename)
bool isPlaybackAutoRepeat()
void setPlaybackAutoRepeat(bool auto_repeat)
bool isPlaybackRewinding()
int getSampleRate()
void putSampleRate(int sample_rate)

PlaybackWriter
RAMFile* ramfile

void initialize()
bool isWriting()
void setWrit ing(bool writing)
void setFilename(const char* filename)
bool hasValidFile()
void rewind()
void writeDataToFile()
void write(char* data, int num_bytes)
void incrementNumberOfDataSets()

11

PlaybackReader
RAMFile* ramfile
int key

void initialize()
bool isReading()
void setReading(bool reading)
void setFilename(const char* filename)
bool hasValidFile()
void rewind()
bool isEndOfFile()
void read(char* data, int num_bytes)
long getNumberOfDataSets()

11

RamFileManager

static RAMFileManager* instance()
static void destroyInstance()
static void createRAMFile()
static void destroyRAMFile()

RAMFile

int fread()
int fwrite()

11 11
0..*0..*

Figure 2 – Playback 
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using a particular file. RAMFileManager only destroys 
the memory buffer for a file when there are no longer 
any RAMFile objects referencing the buffer.  

Playback 

Playback is an abstract class intended to be the base 
class for all types of playback operations. The class 
was designed to provide a generic interface for the 
recording and playback of data. Figure 2 demonstrates 
the Playback class and its dependencies.  

Playback has two virtual methods that must be defined 
by all concrete derived classes. The initialize method 
is expected to initialize a derived class before or after 
data has been recorded or played back. Transfers 
to/from physical disk should occur when this method is 
called. The update method is intended to actually 
transfer data between the RAMFile and the simulation 
models. All of the other methods defined in Playback 
are to be used by clients and derived classes to manage 
the two classes contained within Playback, Playback-
Reader and PlaybackWriter.  

PlaybackReader provides an interface for reading 
playback data. If a valid filename has been given and 
the setReading method has been called with true as its 
argument, the class requests RAMFileManager to cre-
ate a RAMFile for the file and then copies the data into 
the RAMFile if it is the first client of the RAMFile. If it 
is not the first client of this RAMFile then the data has 
already been loaded into memory from the file. Aggre-
gation of a RAMFile object rather than inheritance 
allows PlaybackReader to hide the subset of RAM-
File’s interface for modifying the file, while providing 
wrapper methods allowing reuse of RAMFile’s reading 
capabilities. The PlaybackReader class can now be 
used to read the data.  

PlaybackWriter works in a similar manner except it 
writes data into the RAMFile and then copies it to 
physical file when initialize is called. The class as-
sumes that it is the only user of a RAMFile because it 
is writing data. In a manner similar to Playback-
Reader, PlaybackWriter prevents clients from access-
ing the reading capabilities of RAMFile’s interface 

Figure 3 – The Playback Hierarchy 

PositionalModelPlayback
Vector<double>* position
UnitQuaternion*  orientation
Vector<double>* velocity
Vector<AngularValue>*  angular_vel_body
RotationMatrix& inertial_to_body
GeodeticCoordinates& geodetic_coordinates

virtual void update()
vir tual void initialize()
void readPositionalModelStates()
void writePosi tionalModelStates()

CockpitPlayback
Mode& mode
AdjVector<double*> registered_doubles
AdjVector<int*> registered_ints
AdjVector<bool*> registered_bools

update()
initialize()
addVariables()
registerVariable(double*)
registerVariable(int*)
registerVariable(bool*)

TrafficPlayback
Universe*  universe
RelGeom Table* rel_geom_table
RunwayThreshold*  runway

virtual void update()
virtual void initial ize()

InterpolatingPlayback

virtual void initialize()
vir tual void update()
vo id regis terVariable(double*  variable_to_register)
vo id readNextPoint()
vo id writeNextPoint()

ControlSystemPlayback

virtual void update()

ControlSystemSurfacePlayback

virtual void update()
void registerControlSurface(ControlSurface* surface)

ControlSystemDevicePlayback

virtual void update()
void registerControlDevice(ControlDevice* device)

Playback

virtual void initialize()
virtual void update()
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while providing access to RAMFile’s writing capabili-
ties through wrapper methods. 

Interpolating Playback 

InterpolatingPlayback is a concrete class that records 
data at a fixed integral division of the simulation fre-
quency while allowing data to be played back every 
frame by interpolating between the sampled data 
points. Figure 3 illustrates that InterpolatingPlayback 
inherits from Playback and that the class implements 
the initialize and update virtual methods declared in 
the interface of Playback. The class also uses all of the 
methods defined in Playback to manage the recording 
and playback of files.  

The method registerVariable allows client classes to 
register references to variables that are to be recorded 
and played back. Each variable that is registered with 

InterpolatingPlayback is added to a vector of variables. 
When recording, the method writeNextPoint first 
writes the current time to the RAMFile and then iter-
ates through the vector of registered variables writing 
the value of each variable to the RAMFile. The update 
method makes sure that the writeNextPoint method is 
only called at the selected recording frequency. During 
playback, when the update method is called read-
NextPoint is called to read data sets from the playback 
file until it finds one which occurs after the current 
simulation time. The method readNextPoint saves this 
set and the previous one. A linear interpolation be-
tween these two sets determines the current set. These 
calculated values are then copied into the registered 
variables. If the recording frequency equals the play-
back frequency, no interpolation will be performed and 

Figure 4 – Airport Traffic Diagram 
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the played back data will be identical to the recorded 
data.  

PositionalModelPlayback 

In the LaSRS++ framework, a PositionalModel is a 
simulation object that has a position, orientation, trans-
lational velocity, angular velocity, and a set of geo-
detic coordinates. These are the minimum attributes 
required by the framework for a simulation object to 
be represented visually using a CGI and to support the 
computation of relative geometry between simulation 
objects. The Vehicle class extends PositionalModel by 
inheriting from it and adding acceleration as a state. 
Aircraft in turn, extends Vehicle by adding all of the 
states of an aircraft (angle of attack, sideslip, etc…). 
Since all vehicles in the LaSRS++ framework are de-
scendants of PositionalModel, the motion of any vehi-
cle may be recorded and played back by recording the 
states of a PositionalModel. The Positional-
ModelPlayback class provides a means to record and 
playback these states.  

The constructor of PositionalModelPlayback requires 
references to the state vectors of PositionalModel. 
This is possible because PositionalModelPlayback is 
contained within PositionalModel. Positional-
ModelPlayback inherits from InterpolatingPlayback 
and uses the registerVariable method to register each 
component of the states. When the update method is 
called, the class uses the update method in Interpolat-
ingPlayback to record or playback the state data. If 
playing back data, the method then computes several 
derived quantities needed by the simulation frame-
work.  

TrafficPlayback 

TrafficPlayback is a class that extends Positional-
ModelPlayback by providing logic to make a playback 
positional model behave like aircraft traffic around an 
airport. The logic assumes that all traffic is centered 
about a pair of parallel runways and that the arriving 
traffic must cross the departure runway. The logic also 
assumes that the behavior of a recorded aircraft is con-
sistent with that of an aircraft operating at an airport. 
Figure 4 shows a typical airport layout where the Traf-
ficPlayback class can be used. On this diagram all de-

parting aircraft are leaving on runway 26L and all ar-
riving aircraft are on 26R. The arriving aircraft must 
cross the departure runway to get to the terminal. 

The class performs several different computations to 
ensure that a playback behaves like an aircraft while 
taxiing. First, it uses the relative geometry information 
computed by the framework to ensure that the model is 
not going to collide with another model. If a collision 
is predicted, then the simulation model is brought to a 
halt until the path is clear again. Next, the class man-
ages whether a model may begin to cross or enter the 
departure runway. To do this the class preprocesses the 
playback file when the class is first constructed and 
then determines on which frames the playback model 
would enter or exit the departure runway. The depar-
ture runway is broken into two zones: the runway 
threshold bounding box and the runway bounding box 
as illustrated on figure 4. By tracking when a model is 
entering either of the two zones, the class can manage 
whether or not the model can enter either area because 
it also knows whether another model is active in either 
part of the runway. For example, if a departing aircraft 
has already moved onto the threshold and is ready for 
takeoff, any arriving aircraft that is already crossing 
the departure runway on its way to the terminal would 
be allowed to continue. The departure aircraft is not 
allowed to begin its takeoff until after the runway is 
clear. But any arriving aircraft that are approaching the 
departure runway are forced to stop at the hold short 
line (the outer edge of each bounding box) so that the 
departing aircraft can take off. Once the departing air-
craft is airborne the arriving aircraft is allowed to con-
tinue.  

Finally the class gives the appearance of a continu-
ously busy airport by rewinding a file when the play-
back has reached its end and then starting over. A de-
parture playback file, for example, starts at a terminal 
and taxis to the departure runway. After takeoff the 
aircraft flies for several more minutes. By repeating 
the file again, one aircraft can be used over and over to 
give the appearance of a busy airport. The class also 
allows the simulation user to specify a starting location 
in the playback file by specifying a latitude, longitude 
and altitude. This allows multiple models to use the 
same playback file but start at different time locations 
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within the file. The class also allows the simulation 
user to specify the amount of time the model should 
pause before starting playback. This option allows the 
simulation operator to subject a pilot to traffic events 
such as near collisions, runway incursions, and other 
unusual circumstances. 

ControlSystemPlayback 

In the LaSRS++ framework, a ControlSystem main-
tains a collection of ControlSurfaces.  A ControlSur-
face has a position command and a deflection. In 
closed loop simulation, control laws transform pilot 
inputs into surface position commands. The particular 
control surface then transforms the commanded posi-
tion into a deflection. 

ControlSystemPlayback is derived from Interpolat-
ingPlayback and serves as a base for recording and 
playback of data required for repeatability during 
playback of control surface commands or deflections. 
Since the behavior of an aircraft is dependent both on 
the control surfaces and the engine thrust, it is neces-
sary to record and play back the throttles so that play-
back of the control system results in a model with 
identical behavior to the recorded model. ControlSys-
temPlayback overrides the virtual update method of 
InterpolatingPlayback to transparently record and 
playback throttle positions. It is left as the responsibil-
ity of child classes to record and playback surface 
commands or positions. 

The relationship between ControlSystem and Control-
SystemPlayback is analogous to that between Posi-
tionalModel and PositionalModelPlayback.  Control-
SystemPlayback objects are constructed by and con-
tained within ControlSystem objects.  It is the respon-
sibility of the ControlSystem object to expose its inter-
nal state to the playback object.  The mechanisms by 
which the ControlSystem exposes its state are defined 
in the two child classes of ControlSystemPlayback.  
ControlSystemDevicePlayback defines a method regis-
terControlDevice that gives the playback a reference to 
one of the ControlDevice objects contained within the 
ControlSystem.  Similarly, ControlSystemSurface-
Playback defines registerControlSurface to allow a 
ControlSystem to expose a ControlSurface reference to 
a playback object. 

ControlSystemDevicePlayback maintains a mapping of 
ControlDevices to commands. For each device regis-
tered with a ControlSystemDevicePlayback, an entry is 
added to this mapping, and the command is registered 
with the ancestor class InterpolatingPlayback.  The 
virtual method update is overridden in ControlSys-
temDevicePlayback.  In playback mode, the update 
method of the parent class is called to drive the throt-
tles and to obtain new values for the device commands.  
In recording mode, the update method records the 
throttle positions and the device commands at the re-
cording sample rate. ControlSystemSurfacePlayback 
operates in a similar fashion, for the purpose of record-
ing and playback of throttles and surface positions.  

CockpitPlayback 

CockpitPlayback provides a means to record the pi-
lot’s inputs during a simulation. In LaSRS++, aircraft 
are currently regimented into three categories: fighter, 
transport, and drop model. Each aircraft type has a 
specific cockpit interface that provides the aircraft with 
its inputs. The CockpitPlayback class is used by these 
three interfaces to record and playback a pilot’s inputs.  

A particular cockpit interface registers the variables 
that are to be recorded and played back just like Inter-
polatingPlayback. CockpitPlayback however does not 
have a sampling rate – it records data every frame. 
This is the only way to ensure that the dynamic re-
sponse of a model during playback is identical to the 
original performance.  

Summary 

The design presented in this paper met all of the speci-
fied requirements. The functionality of TrafficPlay-
back alone demonstrates that the design is flexible 
enough to provide most of the required general capa-
bilities. It allows a vehicle to specify a starting point 
within a playback file. It allows the simulation operator 
to start playback at any time. It repeatedly uses the 
same playback data to affect the motion of a positional 
model. It allows several vehicles to be driven from the 
same data file. InterpolatingPlayback demonstrates 
fulfillment of the remaining general requirements. It 
provides a means of recording data at integral divi-
sions of the simulation frequency. It provides a means 
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of playing back data that was recorded at any fre-
quency. The specific playback capabilities were ful-
filled by the concrete, derived classes. 

Each of the playback methods has been used in a num-
ber of experiments at NASA Langley Research Center 
(LaRC). For example, the TrafficPlayback class was 
used in the Low Visibility and Surface Operations 
(LVLASO) study in the Research Flight Deck (RFD) 
at LaRC. The project used the B757 model to study a 
means of improving the safety and efficiency of airport 
surface operations so that clear-weather capacities can 
be maintained during instrument weather conditions.  
The TrafficPlayback class was used to provide airport 
traffic during the study. The TrafficPlayback proved to 
be extremely efficient. When the B757 aircraft model 
is used by itself in the RFD it normally consumes on 
average 11 milliseconds of CPU time per frame. When 
traffic was added to the simulation using sixteen in-
stances of the TrafficPlayback class, the average cpu 
time consumed per frame increased to only 13 milli-
seconds. Clearly each traffic model added to the simu-
lation adds very little to the computational require-
ments of the framework. The ControlSystemPlayback 
class has also been used in several projects. For exam-
ple, the Weather Accident Prevention (WxAP) project 
played back surface positions from flight test data to 
verify simulation model performance. The Cockpit-
Playback class is used on a daily basis by both devel-
opers and researchers to analyze the performance of 
both pilots and simulation models.  

Object-oriented development in C++ allows the com-
plexities associated with playback to be abstracted 
away behind concise interface definitions of the gen-
eral purpose classes discussed in the present work. The 
diverse uses of Playback and InterpolatingPlayaback 
suggest that additional special purpose recording and 
playback features can be easily added to the frame-
work. Development and maintenance efforts have been 
minimized by reuse of this robust foundation. 

Although the design presented in this paper was origi-
nally designed to support flight simulation at NASA 
Langley Research Center, the design could be used in 
any object-oriented framework to heighten reuse and 
maintainability. 
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